## Characterization of hydrated aluminum-containing catalysts by <sup>27</sup>Al solid-state NMR

**Spectroscopic background:** <sup>27</sup>Al nuclei have a spin of I = 5/2 and a quadrupole moment of  $Q = 14.66 \times 10^{-30}$  m<sup>2</sup>. Therefore, <sup>27</sup>Al NMR signals of aluminum atoms in solids are affected by quadrupolar interactions. The <sup>27</sup>Al isotope has a natural abundance of 100 % and a sensitivity of 0.21 in comparison with <sup>1</sup>H nuclei (1.0), making this isotope a very suitable candidate for NMR studies of solids. While <sup>27</sup>Al nuclei of non-hydrated (or dehydrated) aluminosilicates are involved in strong quadrupolar interactions corresponding to quadrupole coupling constants of up to  $C_Q$  = 16 MHz, hydration of these materials significantly decreases these interactions, leading to  $C_Q$  values of 1 to 2 MHz. Therefore, hydrated aluminosilicates-type materials are much easier to study by <sup>27</sup>Al solid-state NMR than these materials in the non-hydrated or dehydrated state. For basic principles of solid-state NMR, see lectures "Solid-State NMR Spectroscopy" for Bachelor students or PhD seminars, accessible via the link "Lectures for Students".

For the framework of **crystalline aluminosilicates**, such as zeolites, the formation of Al-O-Al bonds is forbidden (Loewenstein's rule) and only Al(4Si) units exist. Therefore, the  $^{27}$ Al MAS NMR spectra of pure hydrated zeolites consist of a single signal of tetrahedral framework aluminum atoms,  $Al^{IV}$ , in a chemical shift range of  $\delta_{27Al} = 50$  ppm to 70 ppm (referenced to 0.1 M aqueous Al(NO<sub>3</sub>)<sub>3</sub> solution). In hydrated zeolites, only small deviations from the tetrahedral symmetry of the AlO<sub>4</sub> units exist, which results in a weak quadrupolar broadening of their  $^{27}$ Al MAS NMR signals, corresponding to  $C_Q$  values of 1 to 2 MHz.

For the <sup>27</sup>Al MAS NMR signals of tetrahedrally coordinated framework aluminum atoms (Al<sup>IV</sup>) in hydrated zeolites, no definite relationship between their chemical shift  $\delta_{27\text{Al}}$  and the  $n_{\text{Si}}/n_{\text{Al}}$  ratio or the silicon and aluminum order scheme of the zeolite framework exists. However, a correlation between the <sup>27</sup>Al NMR chemical shift  $\delta_{27\text{Al}}$  of Al(4Si) units and the mean Al-O-Si bond angle  $\alpha$  was found [5]:

$$\delta_{\text{27AI}} / \text{ppm} = 132 - 0.500 \ \overline{\alpha}$$
 (1)

<sup>27</sup>Al and <sup>29</sup>Si MAS NMR investigations of lithium and sodium halide aluminosilicate sodalites led to the following correlation between <sup>27</sup>Al and <sup>29</sup>Si NMR chemical shift values [6]:

$$\delta_{27AI} / \text{ppm} = 1.03 \ \delta_{29Si} / \text{ppm} + 151.94$$
 (2)

Thermal treatments, subsequent rapid rehydration or acid leaching of H-form aluminosilicate-type zeolites can lead to a dealumination of their framework and to the formation of extra-framework aluminum species. Often, these species are octahedrally coordinated aluminum species,  $AI^{VI}$ , partially coordinated to water molecules, and causing  $^{27}AI$  MAS NMR signals at  $\delta_{27AI}$  ca. 0 ppm. If extra-framework aluminum species exist as polymeric aluminum oxide in zeolite cages or pores, a significant quadrupolar signal broadening may occur, due to distortions of the octahedral symmetry of the  $AIO_6$  units.

The signals of **penta-coordinated** aluminum species,  $AI^{V}$ , and of framework aluminum species in a **disturbed tetrahedral coordination**,  $AI^{IV}$ , have chemical shifts of  $\delta_{27AI} = 30$  to 40 ppm [1, 2].

The signal position of  $AI^{IV}$  species is influenced by the so-called second-order quadrupolar shift,  $\delta_{QS}$ , which depends on the local electric field gradient and, therefore, on the quadrupolar coupling constant  $C_Q$  of the corresponding <sup>27</sup>Al nuclei [3]. Furthermore, the strength of the magnetic  $B_0$  field significantly influences the experimentally observed  $\delta_{QS}$  value (compare Fig. 2 in Section "method 3" for <sup>23</sup>Na nuclei (spin I = 3/2)).

An overview on the chemical shifts ranges of  $AI^{IV}$ ,  $A^{V}$ , and  $AI^{VI}$  species in hydrated aluminosilicates is given in **Fig. 1**. See Table 8.1 of Ref. [3] for detailed <sup>27</sup>Al chemical shifts  $\delta_{27AI}$  of the above-mentioned aluminum species in various materials.

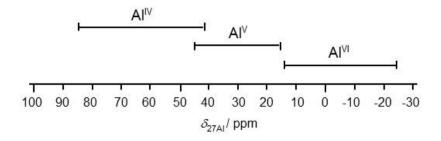



Fig. 1

For demonstrating typical results of <sup>27</sup>Al MAS NMR studies of hydrated aluminosilicate-type zeolites, **Fig. 2** shows spectra of weakly (left) and strongly (right) dealuminated zeolites H,Na-Y [4]. Upon dealumination by steaming, some of the former framework Al<sup>IV</sup> species in zeolite H,Na-Y are disturbed in their tetrahedral oxygen coordination and cause the broad quadrupole pattern, assigned by Al<sup>IV</sup> in **Fig. 2**, right-hand side.

## <sup>27</sup>AI MAS NMR

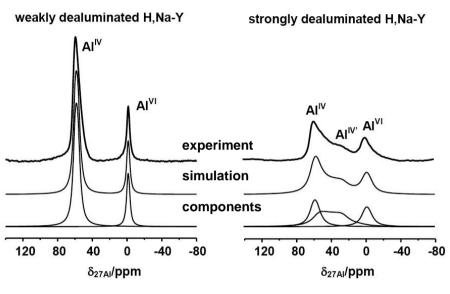
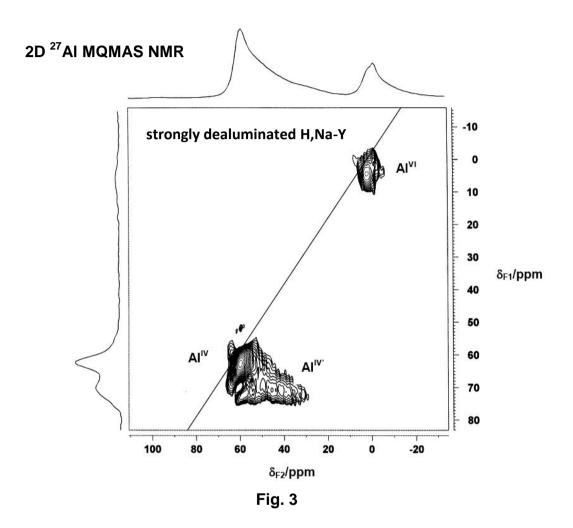




Fig. 2

The MAS technique reduces the broadening of <sup>27</sup>Al MAS NMR signals due to quadrupolar interactions of <sup>27</sup>Al nuclei by a factor of about 1/3.6. In contrast, application of the two-dimensional (2D) multiple-quantum MAS NMR (MQMAS) [7, 8] and the double-rotation (DOR) [9, 10] technique causes a complete averaging of this solid-state interaction.

The 2D <sup>27</sup>Al MQMAS NMR spectrum of a strongly dealuminated and hydrated zeolite H,Na-Y in **Fig. 3** consists of three signals [11]. Two of them, the signals Al <sup>IV</sup> and Al <sup>VI</sup>, are located near the diagonal (straight line) indicating low quadrupolar interactions, which is typical for ideal (high local symmetry) tetrahedrally and octahedrally coordinated framework and extra-framework aluminum species, respectively. In contrast, the broad signal Al <sup>IV</sup> is located beside the diagonal, but at the isotropic chemical shift ( $\delta_{27Al,so} = \delta_{F1}$ ) of Al(4Si) units. The latter is typical for distorted Al(4Si) units involved in strong quadrupolar interactions, i.e. for Al <sup>IV</sup> species. By quantitative evaluation of the signal positions in the 2D <sup>27</sup>Al MQMAS NMR spectra,

the isotropic chemical shifts  $\delta_{27\text{Al},\text{iso}}$  and the second-order quadrupole effect parameters SOQE of the different aluminum species can be determined (see Refs. [3] and [7]). These values are helpful parameters for the simulation and quantitative evaluation of one-dimensional  $^{27}\text{Al MAS NMR}$  spectra (see **Fig. 2**) [4].



In the  $^{27}$ Al MAS NMR spectra of amorphous silica-aluminas (ASA) with high aluminum contents and synthesized by flame-spray pyrolysis, broad signals occur at  $\delta_{27\text{Al}} = 55$ , 30, and 0 ppm [12-14]. Also in this case the question arises, whether the  $^{27}$ Al MAS NMR signal at  $\delta_{27\text{Al}} = 30$  ppm, e.g. in the spectrum of a sample with 70 atom% aluminum (see **Fig. 4, top** [13]), is due to aluminum species in a disturbed tetrahedral coordination (AI<sup>IV'</sup>) or caused by penta-coordinated aluminum (AI<sup>V</sup>) species. The 2D  $^{27}$ Al MQMAS NMR spectrum of this material in **Fig. 4, bottom**, shows three well-resolved signals near the diagonal [13]. Hence, all these signals are due to aluminum species, which are not involved in strong quadrupolar interactions. The positions of their  $^{27}$ Al MAS NMR signals are not influenced by second-order https://michael-hunger.de

quadrupolar shifts. Therefore, the signal at  $\delta_{27AI} = 30$  ppm is to AI<sup>V</sup> species in this case.

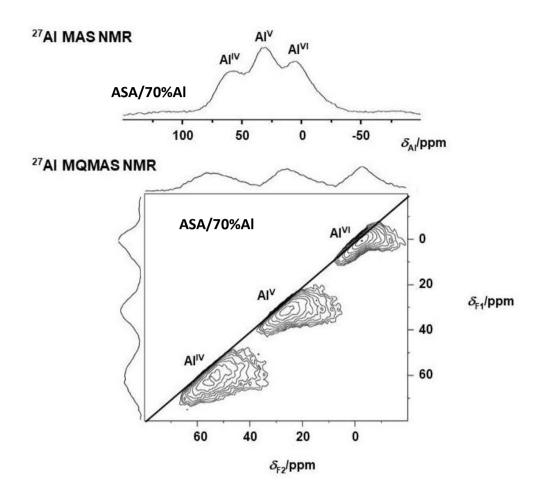
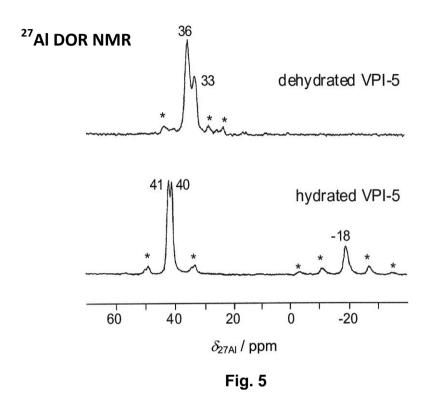




Fig. 4

The framework of **aluminophosphate-type zeolites**, such as VPI-5, is built of AlO<sub>4</sub> and PO<sub>4</sub> tetrahedra in an alternating arrangement. The <sup>27</sup>Al DOR NMR spectra of aluminophosphates consist of narrow signals at  $\delta_{27Al}$  *ca.* 30 to 40 ppm due to tetrahedrally coordinated Al(4P) atoms, Al<sup>IV</sup>, in some cases at crystallographically non-equivalent T-sites. Signals at  $\delta_{27Al}$  *ca.* -20 ppm are caused by octahedrally coordinated framework aluminum atoms, Al<sup>VI</sup>, additionally interacting with adsorbed molecules, such as water. The <sup>27</sup>Al DOR NMR spectrum of dehydrated VPI-5 at the top of Fig. 5, top, consists of two Al(4P) signals at  $\delta_{27Al}$  = 36 ppm and 33 ppm (asterisks are DOR sidebands). Hydration of VPI-5 shifts these signals to chemical shifts of  $\delta_{27Al}$  = 41 ppm and 40 ppm and a new signal occurs at  $\delta_{27Al}$  = -18 ppm in the

range of octahedrally coordinated framework aluminum species, additionally bound to water molecules (**Fig. 5, bottom**) [15].



**Catalyst preparation:** For decreasing quadrupolar interactions of the <sup>27</sup>Al nuclei studied by the spectroscopic methods described in the present section, the powder samples should be hydrated for ca. 12 h over water vapour in a desiccator.

<sup>27</sup>Al solid-state NMR studies: Due to quadrupolar interactions of  $^{27}$ Al nuclei, their single pulse excitation should be performed by less than  $\pi/6$  and most suitable by  $\pi/12$  pulses. Due to the low  $T_1$  times of these quadrupole nuclei, repetition times of 500 ms to 2 s are often suitable. For reaching a high resolution of the  $^{27}$ Al MAS NMR spectra, the sample spinning rate has to be as high as possible and at least 8 kHz. The 2D  $^{27}$ Al MQMAS NMR experiments in Fig. 3 were performed at the Larmor frequency of  $\nu_0$  = 130.32 MHz and using the three-pulse z-filter pulse sequence [8] with pulse lengths of 3.9, 1.3, and 20.0 μs, a repetition time of t = 300 ms, and a 4 mm MAS NMR rotor with a sample spinning rate of  $\nu_{\text{rot}}$  = 12.5 kHz. Referencing of the chemical shift is performed with 0.1 M aqueous Al(NO<sub>3</sub>)<sub>3</sub> solution ( $\delta_{27\text{Al}}$  = 0 ppm).

## References:

- [1] J. Klinowski, C. A. Fyfe, G.C. Gobbi, *High-resolution solid-state nuclear magnetic resonance studies of dealuminated zeolite Y*, J. Chem. Soc., Faraday Transactions 1, 81(1985) 3003-3019, DOI: 10.1039/f19858103003.
- [2] J. Rocha, S.W. Carr, J. Klinowski, <sup>27</sup>Al quadrupole nutation and <sup>1</sup>H <sup>27</sup>Al cross-polarization solid-state NMR studies of ultrastable zeolite Y with fast magicangle spinning, Chern. Phys. Lett. 187 (1991) 401-408; DOI: 10.1016/0009-2614(91)80272-Y.
- [3] D. Freude, <a href="https://www.dieter-freude.de/quad-nmr">https://www.dieter-freude.de/quad-nmr</a>.
- [4] J. Jiao, W. Wang, B. Sulikowski, J. Weitkamp, M. Hunger, <sup>29</sup>Si and <sup>27</sup>Al MAS NMR characterization of non-hydrated zeolites Y upon adsorption of ammonia, Micropor. & Mesopor. Mater 90 (2006) 246–250, DOI: 10.1016/j.micromeso. 2005.08.006.
- [5] E. Lippmaa, A. Samoson, M. Maegi, *High-resolution* <sup>27</sup>AI NMR of aluminosilicates, J Am Chem Soc 108 (1986) 1730-1735, DOI: 10.1021/ja00268a002.
- [6] H.S. Jacobsen, P. Norby, J.H.J. Bildsøe, 1-1 Correlation between <sup>27</sup>Al and <sup>29</sup>Si chemical-shifts and correlations with lattice structures for some aluminosilicate sodalities, Zeolites 9 (1989) 491-495, DOI: 10.1016/0144-2449(89)90043-2.
- [7] J. Rocha, C.M. Morais, C. Fernandez, *Progress in multiple-quantum magicangle spinning NMR spectroscopy*, in: J. Klinowski (Ed.), Topics in Current Chemistry, New Techniques in Solid-State NMR, Vol. 246, Springer, Berlin, 2005, pp. 141–194, DOI: 10.1007/b98650.
- [8] C. Fernandez, M. Pruski, Probing Quadrupolar Nuclei by Solid-State NMR Spectroscopy: Recent Advances, in: Solid State NMR. Topics in Current Chemistry, Vol. 306, Springer, Berlin, Heidelberg, 2011, p. 119-188, ISBN: 978-3-642-24802-3.
- [9] A. Samoson, E. Lippmaa, A. Pines, *High resolution solid-state N.M.R., Averaging of second-order effects by means of a double-rotor*, Mol. Phys.,
  65 (1988) 1013-1018, DOI: 10.1080/00268978800101571.
- [10] M. Hunger, G. Engelhardt, H. Koller, J. Weitkamp, Characterization of sodium cations in dehydrated faujasites and zeolite EMT by <sup>23</sup>Na DOR, 2D nutation, and MAS NMR, Solid State Nucl. Magn. Reson. 2 (1993) 111-120, DOI: 10.1016/0926-2040(93)90029-M.
- [11] S. Altwasser, J. Jiao, S. Steuernagel, J. Weitkamp, M. Hunger, *Elucidating the dealumination mechanism of zeolite H-Y by solid-state NMR spectroscopy*, Stud. Surf. Sci. Catal. 154 (2004) 3098-3105, DOI: 10.1016/S0167-2991(04)80630-X.

- [12] Z. Wang, Y. Jiang, F. Jin, C. Stampfl, M. Hunger, A. Baiker, J. Huang, *Strongly enhanced acidity and activity of amorphous silica-alumina by formation of pentacoordinated A<sup>IV</sup> species*, J. Catal. 372 (2019) 1-7, DOI: 10.1016/j.jcat.2019.02.007
- [13] Z. Wang, Y. Jiang, C. Stampfl, A. Baiker, M. Hunger, J. Huang, NMR spectroscopic characterization of flame-derived amorphous silica-alumina for cyclohexanol and glyceraldehyde conversion, ChemCatChem 12 (2020) 287-293, DOI: 10.1002/cctc.201901728.
- [14] Z. Wang, R. Buechel, Y. Jiang, L. Wang, H. Xu, P. Castignolles, M. Gaborieau, O. Lafon, J.-P. Amoureux, M. Hunger, A. Baiker, J. Huang, *Engineering distinct structure-interface of sub-nano alumina domains on silica for acidic amorphous silica-alumina towards bio-refining*, J. Am. Chem. Soc. Au 1 (2021) 262-271, DOI: 10.1021/jacsau.0c00083.
- [15] B.F. Chmelka, Y. Wu, R. Jelinek, M.E. Davis, A. Pines, in: *Zeolite Chemistry and Catalysis*, P.A. Jacobs, N.I. Jaeger, L. Kubelkova, B. Wichterlova (Eds.), Studies in Surface Science and Catalysis, Vol. 69, Elsevier, Amsterdam, 1991, p. 435-442, DOI: 0-444-88245-6.