Characterization of hydrated aluminum-containing catalysts by 27Al solid-state NMR

Spectroscopic background: ²⁷Al nuclei have a spin of $I = 5/2$ and a quadrupole moment of $Q = 14.66 \times 10^{-30} \text{ m}^2$. Therefore, ²⁷AI NMR signals of aluminum atoms in solids are affected by quadrupolar interactions. The 27 Al isotope has a natural abundance of 100 % and a sensitivity of 0.21 in comparison with ${}^{1}H$ nuclei (1.0), making this isotope a very suitable candidate for NMR studies of solids. While 27 Al nuclei of non-hydrated (or dehydrated) aluminosilicates are involved in strong quadrupolar interactions corresponding to quadrupole coupling constants of up to *C*^Q = 16 MHz, hydration of these materials significantly decreases these interactions, leading to C_0 values of 1 to 2 MHz. Therefore, hydrated aluminosilicates-type materials are much easier to study by 27 Al solid-state NMR than these materials in the non-hydrated or dehydrated state. For basic principles of solid-state NMR, see lectures "Solid-State NMR Spectroscopy" for Bachelor students or PhD seminars, accessible via the link "Lectures for Students".

For the framework of **crystalline aluminosilicates**, such as zeolites, the formation of Al-O-Al bonds is forbidden (Loewenstein's rule) and only Al(4Si) units exist. Therefore, the 27 AI MAS NMR spectra of pure hydrated zeolites consist of a single signal of tetrahedral framework aluminum atoms, **AlIV** , in a chemical shift range of $\delta_{27\text{Al}}$ = 50 ppm to 70 ppm (referenced to 0.1 M aqueous Al(NO₃)₃ solution). In hydrated zeolites, only small deviations from the tetrahedral symmetry of the $AIO₄$ units exist, which results in a weak quadrupolar broadening of their ²⁷AI MAS NMR signals, corresponding to C_Q values of 1 to 2 MHz.

For the ²⁷AI MAS NMR signals of tetrahedrally coordinated framework aluminum atoms (AI^{IV}) in hydrated zeolites, no definite relationship between their chemical shift $\delta_{27\text{Al}}$ and the $n_{\text{Si}}/n_{\text{Al}}$ ratio or the silicon and aluminum order scheme of the zeolite framework exists. However, a correlation between the ²⁷Al NMR chemical shift $\delta_{27\text{Al}}$ of Al(4Si) units and the mean Al-O-Si bond angle α was found [5]:

$$
\delta_{27\text{Al}} / \text{ppm} = 132 - 0.500 \ \overline{\alpha} \tag{1}
$$

 27 Al and 29 Si MAS NMR investigations of lithium and sodium halide aluminosilicate sodalites led to the following correlation between 27 Al and 29 Si NMR chemical shift values [6]:

$$
\delta_{27Al} / \text{ppm} = 1.03 \ \delta_{29Si} / \text{ppm} + 151.94 \tag{2}
$$

Thermal treatments, subsequent rapid rehydration or acid leaching of H-form aluminosilicate-type zeolites can lead to a dealumination of their framework and to the formation of extra-framework aluminum species. Often, these species are octahedrally coordinated aluminum species, **AlVI** , partially coordinated to water molecules, and causing ²⁷AI MAS NMR signals at δ_{27Al} *ca.* 0 ppm. If extra-framework aluminum species exist as polymeric aluminum oxide in zeolite cages or pores, a significant quadrupolar signal broadening may occur, due to distortions of the octahedral symmetry of the $AIO₆$ units.

The signals of **penta-coordinated** aluminum species, **Al^V ,** and of framework aluminum species in a **disturbed tetrahedral coordination, AlIV ' ,** have chemical shifts of $\delta_{27\text{Al}}$ = 30 to 40 ppm [1, 2].

The signal position of Al^{IV} species is influenced by the so-called second-order quadrupolar shift, δ_{OS} , which depends on the local electric field gradient and, therefore, on the quadrupolar coupling constant C_{Q} of the corresponding ²⁷Al nuclei [3]. Furthermore, the strength of the magnetic B_0 field significantly influences the experimentally observed $\delta_{\!Q\!S}$ value (compare Fig. 2 in Section "method 3" for 23 Na nuclei (spin *I* = 3/2)).

An overview on the chemical shifts ranges of **AlIV, A^V ,** and **AlVI species** in hydrated aluminosilicates is given in Fig. 1. See Table 8.1 of Ref. [3] for detailed ²⁷Al chemical shifts $\delta_{27\text{Al}}$ of the above-mentioned aluminum species in various materials.

Fig. 1

For demonstrating typical results of 27 Al MAS NMR studies of hydrated aluminosilicate-type zeolites, **Fig. 2** shows spectra of weakly (left) and strongly (right) dealuminated zeolites H,Na-Y [4]. Upon dealumination by steaming, some of the former framework Al^{\vee} species in zeolite H.Na-Y are disturbed in their tetrahedral oxygen coordination and cause the broad quadrupole pattern, assigned by Al^{IV'} in **Fig. 2**, right-hand side.

The MAS technique reduces the broadening of 27 AI MAS NMR signals due to quadrupolar interactions of 27 Al nuclei by a factor of about 1/3.6. In contrast, application of the two-dimensional (2D) multiple-quantum MAS NMR (MQMAS) [7, 8] and the double-rotation (DOR) [9, 10] technique causes a complete averaging of this solid-state interaction.

The 2D²⁷AI MQMAS NMR spectrum of a strongly dealuminated and hydrated zeolite H,Na-Y in Fig. 3 consists of three signals [11]. Two of them, the signals Al^{IV} and Al^{VI} , are located near the diagonal (straight line) indicating low quadrupolar interactions, which is typical for ideal (high local symmetry) tetrahedrally and octahedrally coordinated framework and extra-framework aluminum species, respectively. In contrast, the broad signal Al^{IV} is located beside the diagonal, but at the isotropic chemical shift ($\delta_{27\text{Al},\text{so}} = \delta_{\text{F1}}$) of Al(4Si) units. The latter is typical for distorted Al(4Si) units involved in strong quadrupolar interactions, i.e. for Al^{IV}' species. By quantitative evaluation of the signal positions in the 2D 27 Al MQMAS NMR spectra,

https://michael-hunger.de

the isotropic chemical shifts $\delta_{27\text{Al},\text{iso}}$ and the second-order quadrupole effect parameters *SOQE* of the different aluminum species can be determined (see Refs. [3] and [7]). These values are helpful parameters for the simulation and quantitative evaluation of one-dimensional ²⁷Al MAS NMR spectra (see **Fig. 2**) [4].

https://michael-hunger.de In the 27 Al MAS NMR spectra of amorphous silica-aluminas (ASA) with high aluminum contents and synthesized by flame-spray pyrolysis, broad signals occur at $\delta_{27\text{Al}}$ = 55, 30, and 0 ppm [12-14]. Also in this case the question arises, whether the ²⁷Al MAS NMR signal at $\delta_{27\text{Al}} = 30$ ppm, e.g. in the spectrum of a sample with 70 atom% aluminum (see **Fig. 4, top** [13]), is due to aluminum species in a disturbed tetrahedral coordination (Al^{IV'}) or caused by penta-coordinated aluminum (Al^V) species. The 2D ²⁷Al MQMAS NMR spectrum of this material in **Fig. 4, bottom**, shows three well-resolved signals near the diagonal [13]. Hence, all these signals are due to aluminum species, which are not involved in strong quadrupolar interactions. The positions of their ²⁷Al MAS NMR signals are not influenced by second-order

quadrupolar shifts. Therefore, the signal at $\delta_{27\text{Al}} = 30$ ppm is to Al^V species in this case.

Fig. 4

The framework of **aluminophosphate-type zeolites**, such as VPI-5, is built of AlO⁴ and PO₄ tetrahedra in an alternating arrangement. The 27 AI DOR NMR spectra of aluminophosphates consist of narrow signals at $\delta_{27\text{Al}}$ **ca. 30 to 40 ppm** due to tetrahedrally coordinated Al(4P) atoms, **AlIV ,** in some cases at crystallographically non-equivalent T-sites. Signals at δ_{27Al} **ca. -20 ppm** are caused by octahedrally coordinated framework aluminum atoms, **AlVI** , additionally interacting with adsorbed molecules, such as water. The 27 AI DOR NMR spectrum of dehydrated VPI-5 at the top of **Fig. 5, top**, consists of two Al(4P) signals at $\delta_{27\text{Al}}$ = 36 ppm and 33 ppm (asterisks are DOR sidebands). Hydration of VPI-5 shifts these signals to chemical shifts of $\delta_{27\text{Al}}$ = 41 ppm and 40 ppm and a new signal occurs at $\delta_{27\text{Al}}$ = -18 ppm in the

range of octahedrally coordinated framework aluminum species, additionally bound to water molecules (**Fig. 5, bottom**) [15].

Catalyst preparation: For decreasing quadrupolar interactions of the ²⁷Al nuclei studied by the spectroscopic methods described in the present section, the powder samples should be hydrated for ca. 12 h over water vapour in a desiccator.

²⁷Al solid-state NMR studies: Due to quadrupolar interactions of ²⁷Al nuclei, their single pulse excitation should be performed by less than $\pi/6$ and most suitable by $\pi/12$ pulses. Due to the low T_1 times of these quadrupole nuclei, repetition times of 500 ms to 2 s are often suitable. For reaching a high resolution of the 27 AI MAS NMR spectra, the sample spinning rate has to be as high as possible and at least 8 kHz. The 2D ²⁷Al MQMAS NMR experiments in Fig. 3 were performed at the Larmor frequency of v_0 = 130.32 MHz and using the three-pulse z-filter pulse sequence [8] with pulse lengths of 3.9, 1.3, and 20.0 μ s, a repetition time of $t = 300$ ms, and a 4 mm MAS NMR rotor with a sample spinning rate of $v_{\text{rot}} = 12.5$ kHz. Referencing of the chemical shift is performed with 0.1 M aqueous $AI(NO_3)_3$ solution ($\delta_{7A1} = 0$ ppm).

References:

- [1] J. Klinowski, C. A. Fyfe, G.C. Gobbi, *High-resolution solid-state nuclear magnetic resonance studies of dealuminated zeolite Y*, J. Chem. Soc., Faraday Transactions 1, 81(1985) 3003-3019, DOI: 10.1039/f19858103003.
- [2] J. Rocha, S.W. Carr, J. Klinowski, *²⁷Al quadrupole nutation and ¹H ²⁷Al crosspolarization solid-state NMR studies of ultrastable zeolite Y with fast magicangle spinning*, Chern. Phys. Lett. 187 (1991) 401-408; DOI: 10.1016/0009- 2614(91)80272-Y.
- [3] D. Freude, [https://www.dieter-freude.de/quad-nmr.](https://www.dieter-freude.de/quad-nmr)
- [4] J. Jiao, W. Wang, B. Sulikowski, J. Weitkamp, M. Hunger, *²⁹Si and ²⁷Al MAS NMR characterization of non-hydrated zeolites Y upon adsorption of ammonia*, Micropor. & Mesopor. Mater 90 (2006) 246–250, DOI: 10.1016/j.micromeso. 2005.08.006.
- [5] E. Lippmaa, A. Samoson, M. Maegi, *High-resolution ²⁷Al NMR of aluminosilicates*, J Am Chem Soc 108 (1986) 1730-1735, DOI: 10.1021/ja00268a002.
- [6] H.S. Jacobsen, P. Norby, J.H.J. Bildsøe, *1-1 Correlation between ²⁷Al and ²⁹Si chemical-shifts and correlations with lattice structures for some aluminosilicate sodalities*, Zeolites 9 (1989) 491-495, DOI: 10.1016/0144-2449(89)90043-2.
- [7] J. Rocha, C.M. Morais, C. Fernandez, *Progress in multiple-quantum magicangle spinning NMR spectroscopy*, in: J. Klinowski (Ed.), Topics in Current Chemistry, New Techniques in Solid-State NMR, Vol. 246, Springer, Berlin, 2005, pp. 141–194, DOI: 10.1007/b98650.
- [8] C. Fernandez, M. Pruski, *Probing Quadrupolar Nuclei by Solid-State NMR Spectroscopy: Recent Advances*, in: Solid State NMR. Topics in Current Chemistry, Vol. 306, Springer, Berlin, Heidelberg, 2011, p. 119-188, ISBN: 978-3-642-24802-3.
- [9] A. Samoson, E. Lippmaa, A. Pines, *High resolution solid-state N.M.R., Averaging of second-order effects by means of a double-rotor*, Mol. Phys., 65 (1988) 1013-1018, DOI: 10.1080/00268978800101571.
- [10] M. Hunger, G. Engelhardt, H. Koller, J. Weitkamp, *Characterization of sodium cations in dehydrated faujasites and zeolite EMT by ²³Na DOR, 2D nutation, and MAS NMR*, Solid State Nucl. Magn. Reson. 2 (1993) 111-120, DOI: 10.1016/0926-2040(93)90029-M.
- [11] S. Altwasser, J. Jiao, S. Steuernagel, J. Weitkamp, M. Hunger, *Elucidating the dealumination mechanism of zeolite H-Y by solid-state NMR spectroscopy*, Stud. Surf. Sci. Catal. 154 (2004) 3098-3105, DOI: 10.1016/S0167- 2991(04)80630-X.
- [12] Z. Wang, Y. Jiang, F. Jin, C. Stampfl, M. Hunger, A. Baiker, J. Huang, *Strongly enhanced acidity and activity of amorphous silica-alumina by formation of pentacoordinated AlV species*, J. Catal. 372 (2019) 1-7, DOI: 10.1016/j.jcat.2019.02.007
- [13] Z. Wang, Y. Jiang, C. Stampfl, A. Baiker, M. Hunger, J. Huang, *NMR spectroscopic characterization of flame-derived amorphous silica-alumina for cyclohexanol and glyceraldehyde conversion*, ChemCatChem 12 (2020) 287- 293, DOI: 10.1002/cctc.201901728.
- [14] Z. Wang, R. Buechel, Y. Jiang, L. Wang, H. Xu, P. Castignolles, M. Gaborieau, O. Lafon, J.-P. Amoureux, M. Hunger, A. Baiker, J. Huang, *Engineering distinct structure-interface of sub-nano alumina domains on silica for acidic amorphous silica-alumina towards bio-refining*, J. Am. Chem. Soc. Au 1 (2021) 262-271, DOI: 10.1021/jacsau.0c00083.
- [15] B.F. Chmelka, Y. Wu, R. Jelinek, M.E. Davis, A. Pines, in: *Zeolite Chemistry and Catalysis*, P.A. Jacobs, N.I. Jaeger, L. Kubelkova, B. Wichterlova (Eds.), Studies in Surface Science and Catalysis, Vol. 69, Elsevier, Amsterdam, 1991, p. 435-442, DOI: 0-444-88245-6.